Suppression of endothelin-1-induced cardiac myocyte hypertrophy by PPAR agonists: role of diacylglycerol kinase zeta.
نویسندگان
چکیده
AIMS Ligand activation of peroxisome proliferator-activated receptors (PPARs) prevents cardiomyocyte hypertrophy, but the underlying signalling mechanisms remain unknown. We previously reported that the anti-hypertrophic effect of the dietary polyunsaturated fatty acid, conjugated linoleic acid (CLA), was associated with the upregulation of diacylglycerol (DAG) kinase (DGK). DGK catalyses phosphorylative conversion/attenuation of DAG, thereby modulating protein kinase C (PKC) and G-protein signalling. As the anti-hypertrophic effects of CLA were attenuated by inhibitors of PPARs, the present aim was to investigate the involvement of DGK in the anti-hypertrophic actions of bona fide selective PPAR agonists. METHODS AND RESULTS Endothelin-1 (ET1)-induced hypertrophy of neonatal, and then adult, Sprague-Dawley rat cardiomyocytes served as experimental paradigms. Expression of DGKζ, the predominant DGK isoform in myocytes, was stimulated by ligands of PPARγ (troglitazone) or PPARα (fenofibrate) and was accompanied by increased DGK activity. Troglitazone or fenofibrate prevented hypertrophic indicators elicited by ET1, including myocyte size augmentation, de novo protein synthesis, hypertrophic gene expression, and activation of the pro-hypertrophic signal, PKCε. shRNA knockdown of DGKζ abolished the growth-inhibitory effects of PPARs and restored all ET1-induced aspects of hypertrophy. Importantly, the involvement of DGK in the ability of troglitazone and fenofibrate to block ET1-induced hypertrophy and PKCε signalling was verified in adult rat myocytes. CONCLUSION Collectively, these findings show that the anti-hypertrophic actions of PPARs require DGKζ. Thus, within the cardiomyocyte, there exists a PPAR-DGK signalling axis that underpins the ability of PPAR ligands to inhibit ET1-dependent hypertrophy.
منابع مشابه
Interplay of Phosphorylated Apoptosis Repressor with CARD, Casein Kinase-2 and Reactive Oxygen Species in Regulating Endothelin-1–Induced Cardiomyocyte Hypertrophy
Objective(s): The role of the Apoptosis repressor with caspase recruitment domain (ARC) in apoptosis and in certain hypertrophic responses has been previously investigated, but its regulation of Endothelin-1 induced cardiac hypertrophy remains unknown. The present study discusses the inhibitory role of ARC against endothelin–induced hypertrophy. Results:In present study Endothelin treated car...
متن کاملAdenovirus-mediated overexpression of diacylglycerol kinase-zeta inhibits endothelin-1-induced cardiomyocyte hypertrophy.
BACKGROUND Diacylglycerol (DAG) is a lipid second messenger that transiently accumulates in cells stimulated by endothelin-1 (ET-1) and other Galphaq protein-coupled receptor agonists. Diacylglycerol kinase (DGK) is thought to be an enzyme that controls the cellular levels of DAG by converting it to phosphatidic acid; however, the functional role of DGK has not been examined in cardiomyocytes. ...
متن کاملLiganded Peroxisome Proliferator-Activated Receptors (PPARs) Preserve Nuclear Histone Deacetylase 5 Levels in Endothelin-Treated Sprague-Dawley Rat Cardiac Myocytes
Ligand activation of peroxisome proliferator-activated receptors (PPARs) prevents cardiac myocyte hypertrophy, and we previously reported that diacylglycerol kinase zeta (DGKζ) is critically involved. DGKζ is an intracellular lipid kinase that catalyzes phosphorylation of diacylglycerol; by attenuating DAG signaling, DGKζ suppresses protein kinase C (PKC) and G-protein signaling. Here, we inves...
متن کاملStimulation of the p38 Mitogen-activated Protein Kinase Pathway in Neonatal Rat Ventricular Myocytes by the G Protein–coupled Receptor Agonists, Endothelin-1 and Phenylephrine: A Role in Cardiac Myocyte Hypertrophy?
We examined the activation of the p38 mitogen-activated protein kinase (p38-MAPK) pathway by the G protein-coupled receptor agonists, endothelin-1 and phenylephrine in primary cultures of cardiac myocytes from neonatal rat hearts. Both agonists increased the phosphorylation (activation) of p38-MAPK by approximately 12-fold. A p38-MAPK substrate, MAPK-activated protein kinase 2 (MAPKAPK2), was a...
متن کاملInvolvement of Nuclear Factor- B and Apoptosis Signal-Regulating Kinase 1 in G-Protein–Coupled Receptor Agonist–Induced Cardiomyocyte Hypertrophy
Background—Recently, reactive oxygen species (ROS) have emerged as important molecules in cardiac hypertrophy. However, the ROS-dependent signal transduction mechanism remains to be elucidated. In this study, we examined the role of an ROS-sensitive transcriptional factor, NFB, and a mitogen-activated protein kinase kinase kinase, apoptosis signal-regulating kinase 1 (ASK1), in G-protein–couple...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cardiovascular research
دوره 90 2 شماره
صفحات -
تاریخ انتشار 2011